(相关资料图)
import torchimport torch.nn as nn#继承nn.Module来实现自己的模型class MyLinear(nn.Module): def __init__(self, inp, outp): super(MyLinear,self).__init__() # requires_grad = True self.w = nn.Parameter(torch.randn(outp,inp)) self.b = nn.Parameter(torch.randn(outp)) def forward(self,x): x = x @ self.w.t() +self.b return x
图像增强操作数据增强:低网络容量、regularization规范化、Data argumentation数据推论data argumentation的手段:
Flip :翻转
Rotate:旋转
Random Move & Crop:随机移动,裁剪,加noise 高斯噪声
GAN:生成对抗网络